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ABSTRACT 

Suppose it is desired to partition 
a distribution into k groups (k given) 
using squared error or absolute error 
as the measure of information retained. 
An algorithm to obtain the optimal 
boundaries (or class probabilities) 
is given. Optimal class probabilities 

for the case of squared error, were 
.obtained for k = 2 to 15 for beta (for 
various values of the parameters), 
chi - square (12 d.f.), exponential, 
normal, and uniform distributions. 
Results obtained are compared and 
analyzed in the light of existing 
papers. 

The problem of partitioning a 
bivariate normal distribution into 
k groups using squared error as the 
measure of information retained is 
also considered. One way of formu- 
lating this mathematically is given 
and the results so obtained are dis- 
cussed. 

Problems of partitioning subject 
to loss functions incorporating both 
squared error and a cost associated 
with the number of classes are con- 
sidered. Some problems for further 
investigation are outlined. 

In these Proceedings we only 
summarize in words the results obtain- 
ed. Mathematical statements of the 
results, proofs, and tables are given 
in Johari (19 75) , 
1. INTRODUCTION 

Let X be a numerical random vari- 
able measuring some property which 
is conveniently represented by ordered 
categories. E.g., X may be some 
ical variable related to health, and 
may be convenient to classify people 
as in poor, fair, or good health. 

By partitioning the distribution 
of the random variable X we mean 
assigning each of its possible values 
to one of k classes. The problem is 
to define the classes, or, equivalent- 
ly, to determine the class probabili- 
ties or boundaries. The problem of 
partitioning is known also as the 
grouping problem. 

The problem of assignina letter 
grades in courses may be considered 
in these terms. An instructor is 
confronted with the task of giving 
one of the.five letter grades A, B, 
C, D, or F. to each of the students in 

'his cláss on the basis of their meas- 
ured performance, X. Sometimes the 
distribution (108,208,408,208,10$) is 

used.. If one used a. partition of the 
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normal distribution given by boundaries 
one standard deviation apart, that is, 
at -1.5, -0.5, +0.5, +1.5, then the 
distribution over A,B,C,D,F would be 
(6.68%, 24.17%, 38.30%, 24.17%, 6.68 %). 
Rounding to the nearest 10% produces 
the distribution (10%, 20%, 40%, 20 , 
10%). 

During World War II the Army 
Air Force Aviation Psychology Program 
used a stanine scale for scoring 
psychological tests. [See, e.g., 
Ferguson(1971), p.386.] The possible 
range of scores on a test was parti- 
tioned into nine intervals, labelled 
1, 2, ..., 9. These scores are called 
stanines (short for "standard nine ") . 

Stanine scores correspond to intervals 
of equal width along the X -axis. 
The width used is one -half a standard 
deviation unit. A stanine of 5 covers 
the interval from -.25 to +.25 in 
standard deviation units; a stanine 
of 6, the interval +.25 to +.75; etc. 
A stanine of 9 includes not only the 
interval 1.75 to 2.25 but also all 
cases above 2.25; similarly, a stanine 
of 1 includes all cases below -2.25. 
The corresponding distribution is 
(4%, 7%, 12%, 17%, 20%, 17%, 12%, 

7%, 4%). The question arises as to 
how good this grouping may be. 
The question also arises as to how much 
additional information is conveyed by 
say, 9 groups instead of 8. 

Given some reasonable measure of 
goodness of a grouping, what is the 
best grouping into k classes for a 
normal distribution? Cox (]957) 

considered this question, using a 
measure of goodness corresponding to 
squared error loss and obtaining 
explicit numerical results for k = 2 

to 6. Connor. (1972) obtained results, 
again for k = 2 to 6, for the exponen, 
tial distribution. He focused on the 
problem of maximizing the asymptotic 
efficience of a test for correlation 
of a binary variable with the continu- 
ous variable X. He notes various 
contexts in which the mathematical 
problem equivalent to that of deter- 
mining the optimal classes appears. 

For some purposes, say for ease 
of calculation or graphical represen- 
tation, it may be best to use groups 
of equal width, as in the case of 
stanines. Given k, what is the best 
equal -width grouping for a normal 
distribution? Stefansky and Kaiser 
(1973) considered this question. 
Using a measure of goodness correspon- 
ding to squared error loss, they give 
optimal equal -width groupings for a 
norms; distribution for k = 2 to 15, 



Having summarized the previous 
work in this area, we shall now present 
our results. In these Proceedings 
we only summarize in words the results 
obtained. Mathematical statements of 
the .results, their proofs, and tables 
are given in Johari(1975). 

2. PARTITIONING A UNIVARIATE DISTRI- 
BUTION 

2.1. Case of Squared Error 
Consider a continuous probability 

density function with support S, which 
may be finite or infinite, and finite 
variance,a ?Suppose it is desired to 
parti -ion S into k intervals. With 
th i -th interval associate a value 
v(i) and imagine that each individual 
put into the i -th interval is given the 
value v(i). That is, we have a random 
variable v(X), a function of the random 
variable X, defined by v(x) = v(i) when 
X is in the i -th interval. We measure 
the loss due to assigning an individual 
with the value x to the i -th interval 
by [x - v(i)]2 /a2. 

The expected loss L due to parti- 
tioning is the expected value, L = 
E[X - v(X)] 2 /a2. To minimize L, proceed 

in two staaes. First, for any fixed 
partition, choose v(1), v(k) to 
minimize L; then choose the partition. 
To achieve the first part of the mini- 
mization, choose v(i) to be the condi- 
tional mean of the i -th interval, since 
the second moment about the mean is 

less than that about any other point. 
From now on v(i) will be used to denote 
the conditional mean of the i -th inter- 
val. Also, v will denote E(X). 

If p(i) denotes the probability 
that an observation falls in the i -th 
interval, then 72L = 
Epf_jE'[(X - v(i))2IX in i -th interval], 
where the summation is over .,2,...,k. 
Note that L 1 - where M = 
E p(i)[v(i) - v]2 is a normalized 
between -groups sum of squares. We 
wish to mazimize M. Observe that if 
k = 1, then L = 1, representing com- 
plete loss of information about dif- 
ferences among individuals. 

2.1.1. Characterization of the 
Boundaries 

Theorem 1. Each of the optimal 
boundaries is halfway between the 
conditional means of the adjacent in- 
tervals of the partition. 
Theorem 2. If the distribution is 
symmetric , then the optimal boundaries 
are symmetric about the mean. 

2.1.2. An Algorithm for Constructing 
the Boundaries 

Step 1: Pick any k -1 boundaries to 
begin. 
Step 2: Find the conditional means 
of . the corresponding intervals. 
Step 3: Compute new boundaries, the 
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points halfway between the conditional 
means. 

Stop when sufficient accuracy 
has been attained. 

2.1.3. Numerical Results 

Optimal partitions were obtained 

for the following distributions: (i) 

Normal, (ii) Exponential, (iii)Uniform, 
(iv) Chi- square(12 d.f.) and (v) Beta 
with parameters m =10, n =2; np2,n =2; 
m=.5, n =1; m=5, n =5; and m=3, n =2, 
using the algorithm on an IBM 370/155. 
The results are tabulated in Johari 
(1975) . - 

It should be observed that once the 
optimal boundaries are known for say 
the standard normal distribution N(0,1), 
the boundaries for N(p,a2) can be 
obtained by replacing a boundary B 
by +aB. The percentages of indivi- 
duals in each group remain the same. 
The transformation for the exponential 
distribution with mean p =1 to p =m 
is.givenoby replacing B by This 
works for any location -scale parameter 
family. This is not the case for chi - 
square and beta distributions. 

Throughout the analysis we assumed 
the mean and the standard deviation 
of the distribution to be known. If 
instead we are given a random sample 
from a distribution in a specified 
family, the parameters being unknown, 
we estimate them in the usual way 
and apply the results to the estimated 
distribution. 

2.1.4. Discussion and Applications 

a. Comparison of results for 
various distributions. From the 
numerical results we observed that 
if we deal with distributions with 
less important tails, it is best.to - 

allow the frequency in the tail groups 
to rise, whereas in a distribution with 
one long tail, it is best to have a 
tail group or groups with lower fre- 
quencies. This agrees wiht what Cox 
(1957) conjectured. If the distribution 
is symmetric, then as proved in Theorem 
2, it is best to allow the frequency 
of the first group to be equal to the 
frequency of the last group, the fre 
quency of the second group to be equal 
to that of the second to last group, 
etc. We also observed that.the normal 
distribution appears to require at 
least as may classes to retain a speci- 
fied amount of information as does any 
other distribution. This is analogous 
to the fact that the normal is the 
maximum entropy distribution, among 
those with given variance. [See,e.g., 
Ash(1965), p. 240.] 



b. Number of groups. The numeri- 
cal results show that the effect of 
increasing the number of classes is 
small beyond three or four classes. 
Therefore, these results suggest that 
it is advisable to use more than two 
classes, but that using more than four 
or five yields only marginally more 
information. Moreover, the classes are 
quite robust with respect to moderate 
departure from their optimal probabili- 
ties. E.g., equal frequencies parti- 
tions retain almost as much information 
as optimal partitions. 

For the problem of assigning let- 
ter grades in courses, the case k = 2 

relates to a pass -fail system k = 3 

is what one often encounters in grading 
graduate students; k = 4 (A,B,C,D) 
and k = 5 ( A,B,C,D,F) occur typically 
in grading undergraduates. The cases 
of k = 6 to 15 occur where pluses and 
minuses are attached to the letter 
grades. 

c. Case of five groups. The case 
of five groups is of special interest 
because of the widespread use of the 
letter grades (A,B,C,D,F). Some 
schools use the distribution (10%, 
20%, 40%, 20%, 10%) over these grades. 
This distribution is also recommended 
by at least some accreditation organi- 
zations, for example the Engineers' 
Council for Professional Development. 
This distribution is nice because all 
the percentages are multiples of 10. 
If there are n students, then m(A) 
= .10n is the number receiving A, 
m(B) = 2m(A) is the dumber receiving B; 
m(C) = 2m(B) is the number receiving 
C; m(D) m(B); m(F) m(A). 

As was pointed above, use of 
boundaries one standard deviation 
apart produces the distribution (6.68%, 
24.17 %, 38.30%, 24.17%, 6.68%). Roun- 
ding,the percentages in this distribu- 
tion to the nearest 10% produces the 
distribution (108,208,408,208,108). 
Rounding the percentages to the nearest 
5% produces the distribution (5%,25%, 
40%,25%,5%). This differs from 
(10%, 25%, 30%, 25%, 10%), the dis- 
tribution obtained by rounding the per- 
centages of the optimal distribution 
to the nearest 5%, which we recommend 
invite -Ed of (108,208,408,208,108). 

d. Near optimality of stanines 

For the stanine scale, the Army 
Air Force used intervals of width .5, 
which correspond to the distribution 
(48 ,78,128,178,208,178,128,78,48). 
Stefansicv and aiser (1973) consider 

the problem of partitioning the normal 
distribution into k = 2 to 15 groups, 
minimizing the squared error loss, 
subject to the condition of equally 
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spaced boundaries. They atate the 
optimal width for k = 9 to be .5338, 
which is not in agreement wiht our re- 
sults. A width of .5338 retains only 
97.06% of the information, which is 
indeed worse than the stanines' width 
of .5, which retains 97.07%. (Stef- 
ansky and Kaiser have 96.93% instead of 
97.06%.) According to our calculations 
the width should be taken to be .51 
(retaining 97.08% of the information), 
very close indeed.to what the Army Air 
Force used. The overall best distri- 
bution for k = 9, accorindg to our 
calculations, is (3%,9%,13%,16%,18%, 
16%,13%,9%,3%). The information re- 
tained in this case is 97.21 %. 

3. CASE OF ABSOLUTE ERROR 
2.2 Case of Absolute Error 

Analogous results, with medians 
replacing means, hold when the loss 
function is absolute error. 

3. PARTITIONING A BIVARIATE NORMAL 
DISTRIBUTION 

Let X denote a bivariate continu- 
ous random variable, i.e., X' = (X1,X2) 
with support S (which is a subset áf 
the plane. Suppose it is desired to 
partition S into k groups. With the 
i -th group, S(i), we associate a vector 
v(i) and imagine that each object put . 

into the i -th group is given the value 
v(i). I.e., we have a random variable 
v(X), a function of the random vector 

defined by v(x) = v(i), when is 
in S(i). The loss due to groupiñg 
an object with value x into the i -th 
group is measured by 
[x - v(i)PE-'[x - v(i)], vector 
squared error the metric of E, the 
covariance matrix of X, The loss 
function L is taken to be half the 
expectation of this squared error. 
The factor of two is used so that L 
1.when k =1. Again, the minimization 

..can be çlone in two stages, the V(i) 
being taken to be the conditional 
mean vectors. 

Now assume X is bivariate normal. 
Furthermore, let us assume that the 
set S(i) is the sector between 
the .angles _ 

8(i) and 0(i -1) (in polar co- ordinates), 
with the last angle being 27 and the 
first being 0. Writing L in terms of 
the angles, setting the partials of 
L with respect.to the es equal 
to zero, and solving shows that the . 

unique solution is given by 
6(i) = /k) i + (0) for i = 1,2, 
...,k -1. This proves the theorem: 
Let be distributed according to 

the bivariate normal distri- 
bution with mean vector 0 and covarin 
ance matrix I. Suppose that is is 
desired to partition this distribu- 
tion into k groups, where each group 



is-Wedge-shaped, the wedges having 
their vertices at (0,0), the i -th group 
being given by (6(i- 1),8(i)) in polar 
co- ordinates, using L as the measure 
of information retained. Then the 
unique optimal partition is given by 
the equi- angular partition. 

Results for the problem of parti- 
tioning when the covariance matrix is 
not the identity and the loss function 
is squared error in the metric of the . 

covariance matrix can be obtained by 
transforming to the case in which the 
covariance matrix is the identity. 
The results show that smaller angles 
are needed where the density is high. 

4. SOME EXTENSIONS 

4.1. Loss Functions Incorporating 
the Number of Groups 

Given k, the number of groups, 
we can find the optimal partition 
of a given distribution. We now impose 
additional conditions to force the 
existence of a single best k, that is, 
we add a function of k to the loss. 
Consider the loss function, 
Loss = Squared error + Ck, 
where C is some positive constant, 
the cost per group. If C is small, 
a large value of k is optimal; if 
C is large, a small value of k is 
optimal. The optimal k is a non -in- 
creasing step function of C. Values 
are given. in Johari(1975). 

4.2. Loss Function Incorporating Cost 
of Inequity of Partition 

Suppose it is physically conveni- 
ent if the groups have the same proba 
bility. (One can think of some such 
problem as assigning pupils to k teach- 
ers, using some dimension of ability, 
where it would be convenient if each 
teacher had the same number of pupils.) 
Then it makes sense to add to the orig- 
inal loss function a term measuring 
the inequity of the partition. 

We used a function analogous to 
the "chi- square" statistic for measu- 
ring the departure of observed relative 
frequencies from expected relative . 
frequencies, in this case, a uniform 
distribution. In this case one could 
find the optimal k by computer. 
If the weight given the chi -square 
portion of the loss is small, the 
solution will be close to that obtained 
without consideration of the cost of 
inequity. If this weight is large, 
a distribution close to the uniform 
will be optimal. 
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